/* *********************************************************************** // // Copyright (C) 2025 -- The 4D-STAR Collaboration // File Author: Emily Boudreaux // Last Modified: April 21, 2025 // // 4DSSE is free software; you can use it and/or modify // it under the terms and restrictions the GNU General Library Public // License version 3 (GPLv3) as published by the Free Software Foundation. // // 4DSSE is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with this software; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // *********************************************************************** */ #include "operator.h" #include "4DSTARTypes.h" #include "mfem.hpp" #include "mfem_smout.h" #include PolytropeOperator::PolytropeOperator( std::unique_ptr M, std::unique_ptr Q, std::unique_ptr D, std::unique_ptr f, const mfem::Array &blockOffsets, const double index) : mfem::Operator(blockOffsets.Last()), // Initialize the base class with the total size of the block offset vector m_blockOffsets(blockOffsets), m_jacobian(nullptr) { m_M = std::move(M); m_Q = std::move(Q); m_D = std::move(D); m_f = std::move(f); // Use Gauss-Seidel smoother to approximate the inverse of the matrix // t = 0 (symmetric Gauss-Seidel), 1 (forward Gauss-Seidel), 2 (backward Gauss-Seidel) // iterations = 3 m_invNonlinearJacobian = std::make_unique(0, 3); } void PolytropeOperator::finalize(const mfem::Vector &initTheta) { if (m_isFinalized) { return; } m_Mmat = std::make_unique(m_M->SpMat()); m_Qmat = std::make_unique(m_Q->SpMat()); m_Dmat = std::make_unique(m_D->SpMat()); // Remove the essential dofs from the constant matrices for (const auto& dof: m_theta_ess_tdofs.first) { m_Mmat->EliminateRow(dof); m_Qmat->EliminateCol(dof); } for (const auto& dof: m_phi_ess_tdofs.first) { m_Mmat->EliminateCol(dof); m_Qmat->EliminateRow(dof); m_Dmat->EliminateRowCol(dof); } m_negM_mat = std::make_unique(m_Mmat.get(), -1.0); m_negQ_mat = std::make_unique(m_Qmat.get(), -1.0); m_schurCompliment = std::make_unique(*m_Qmat, *m_Dmat, *m_Mmat); // Set up the constant parts of the jacobian now // We use the assembled matrices with their boundary conditions already removed for the jacobian m_jacobian = std::make_unique(m_blockOffsets); m_jacobian->SetBlock(0, 1, m_negM_mat.get()); //<- -M (constant) m_jacobian->SetBlock(1, 0, m_negQ_mat.get()); //<- -Q (constant) m_jacobian->SetBlock(1, 1, m_Dmat.get()); //<- D (constant) m_invSchurCompliment = std::make_unique(*m_schurCompliment); m_isFinalized = true; // Build the initial preconditioner based on some initial guess const auto &grad = m_f->GetGradient(initTheta); updatePreconditioner(grad); } const mfem::BlockOperator &PolytropeOperator::GetJacobianOperator() const { if (m_jacobian == nullptr) { MFEM_ABORT("Jacobian has not been initialized before GetJacobianOperator() call."); } if (!m_isFinalized) { MFEM_ABORT("PolytropeOperator not finalized prior to call to GetJacobianOperator()."); } return *m_jacobian; } mfem::BlockDiagonalPreconditioner& PolytropeOperator::GetPreconditioner() const { if (m_schurPreconditioner == nullptr) { MFEM_ABORT("Schur preconditioner has not been initialized before GetPreconditioner() call."); } if (!m_isFinalized) { MFEM_ABORT("PolytropeOperator not finalized prior to call to GetPreconditioner()."); } return *m_schurPreconditioner; } void PolytropeOperator::Mult(const mfem::Vector &x, mfem::Vector &y) const { if (!m_isFinalized) { MFEM_ABORT("PolytropeOperator::Mult called before finalize"); } // -- Create BlockVector views for input x and output y mfem::BlockVector x_block(const_cast(x), m_blockOffsets); mfem::BlockVector y_block(y, m_blockOffsets); // -- Get Vector views for individual blocks const mfem::Vector &x_theta = x_block.GetBlock(0); const mfem::Vector &x_phi = x_block.GetBlock(1); mfem::Vector &y_R0 = y_block.GetBlock(0); // Residual Block 0 (theta) mfem::Vector &y_R1 = y_block.GetBlock(1); // Residual Block 1 (phi) int theta_size = m_blockOffsets[1] - m_blockOffsets[0]; int phi_size = m_blockOffsets[2] - m_blockOffsets[1]; mfem::Vector f_term(theta_size); mfem::Vector Mphi_term(theta_size); mfem::Vector Dphi_term(phi_size); mfem::Vector Qtheta_term(phi_size); // Calculate R0 and R1 terms // R0 = f(θ) - Mɸ // R1 = Dɸ - Qθ MFEM_ASSERT(m_f.get() != nullptr, "NonlinearForm m_f is null in PolytropeOperator::Mult"); m_f->Mult(x_theta, f_term); m_M->Mult(x_phi, Mphi_term); m_D->Mult(x_phi, Dphi_term); m_Q->Mult(x_theta, Qtheta_term); subtract(f_term, Mphi_term, y_R0); subtract(Dphi_term, Qtheta_term, y_R1); // -- Apply essential boundary conditions -- for (int i = 0; i < m_theta_ess_tdofs.first.Size(); i++) { if (int idx = m_theta_ess_tdofs.first[i]; idx >= 0 && idx < y_R0.Size()) { const double &targetValue = m_theta_ess_tdofs.second[i]; y_block.GetBlock(0)[idx] = x_theta(idx) - targetValue; // inhomogenous essential bc. } } for (int i = 0; i < m_phi_ess_tdofs.first.Size(); i++) { if (int idx = m_phi_ess_tdofs.first[i]; idx >= 0 && idx < y_R1.Size()) { const double &targetValue = m_phi_ess_tdofs.second[i]; y_block.GetBlock(1)[idx] = x_phi(idx) - targetValue; // inhomogenous essential bc. } } std::cout << "||r_θ|| = " << y_block.GetBlock(0).Norml2(); std::cout << ", ||r_φ|| = " << y_block.GetBlock(1).Norml2() << std::endl; } void PolytropeOperator::updateInverseNonlinearJacobian(const mfem::Operator &grad) const { m_invNonlinearJacobian->SetOperator(grad); } void PolytropeOperator::updateInverseSchurCompliment() const { // TODO: This entire function could probably be refactored out if (!m_isFinalized) { MFEM_ABORT("PolytropeOperator::updateInverseSchurCompliment called before finalize"); } if (m_invNonlinearJacobian == nullptr) { MFEM_ABORT("PolytropeOperator::updateInverseSchurCompliment called before updateInverseNonlinearJacobian"); } if (m_schurCompliment == nullptr) { MFEM_ABORT("PolytropeOperator::updateInverseSchurCompliment called before updateInverseSchurCompliment"); } m_schurCompliment->updateInverseNonlinearJacobian(*m_invNonlinearJacobian); if (m_schurPreconditioner == nullptr) { m_schurPreconditioner = std::make_unique(m_blockOffsets); } m_schurPreconditioner->SetDiagonalBlock(0, m_invNonlinearJacobian.get()); m_schurPreconditioner->SetDiagonalBlock(1, m_invSchurCompliment.get()); } void PolytropeOperator::updatePreconditioner(const mfem::Operator &grad) const { updateInverseNonlinearJacobian(grad); updateInverseSchurCompliment(); } mfem::Operator& PolytropeOperator::GetGradient(const mfem::Vector &x) const { if (!m_isFinalized) { MFEM_ABORT("PolytropeOperator::GetGradient called before finalize"); } // --- Get the gradient of f --- mfem::BlockVector x_block(const_cast(x), m_blockOffsets); const mfem::Vector& x_theta = x_block.GetBlock(0); auto &grad = m_f->GetGradient(x_theta); updatePreconditioner(grad); m_jacobian->SetBlock(0, 0, &grad); return *m_jacobian; } void PolytropeOperator::SetEssentialTrueDofs(const SSE::MFEMArrayPair& theta_ess_tdofs, const SSE::MFEMArrayPair& phi_ess_tdofs) { m_isFinalized = false; m_theta_ess_tdofs = theta_ess_tdofs; m_phi_ess_tdofs = phi_ess_tdofs; if (m_f) { m_f->SetEssentialTrueDofs(theta_ess_tdofs.first); } else { MFEM_ABORT("m_f is null in PolytropeOperator::SetEssentialTrueDofs"); } } void PolytropeOperator::SetEssentialTrueDofs(const SSE::MFEMArrayPairSet& ess_tdof_pair_set) { SetEssentialTrueDofs(ess_tdof_pair_set.first, ess_tdof_pair_set.second); } SSE::MFEMArrayPairSet PolytropeOperator::GetEssentialTrueDofs() const { return std::make_pair(m_theta_ess_tdofs, m_phi_ess_tdofs); } GMRESInverter::GMRESInverter(const SchurCompliment &op) : mfem::Operator(op.Height(), op.Width()), m_op(op) { m_solver.SetOperator(m_op); m_solver.SetMaxIter(100); m_solver.SetRelTol(1e-1); m_solver.SetAbsTol(1e-1); } void GMRESInverter::Mult(const mfem::Vector &x, mfem::Vector &y) const { m_solver.Mult(x, y); // Approximates m_op^-1 * x } SchurCompliment::SchurCompliment( const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp, const mfem::Solver &GradInvOp) : mfem::Operator(DOp.Height(), DOp.Width()) { SetOperator(QOp, DOp, MOp, GradInvOp); m_nPhi = m_DOp->Height(); m_nTheta = m_MOp->Height(); } SchurCompliment::SchurCompliment( const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp) : mfem::Operator(DOp.Height(), DOp.Width()) { updateConstantTerms(QOp, DOp, MOp); m_nPhi = m_DOp->Height(); m_nTheta = m_MOp->Height(); } void SchurCompliment::SetOperator(const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp, const mfem::Solver &GradInvOp) { updateConstantTerms(QOp, DOp, MOp); updateInverseNonlinearJacobian(GradInvOp); } void SchurCompliment::updateInverseNonlinearJacobian(const mfem::Solver &gradInv) { m_GradInvOp = &gradInv; } void SchurCompliment::updateConstantTerms(const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp) { m_QOp = &QOp; m_DOp = &DOp; m_MOp = &MOp; } void SchurCompliment::Mult(const mfem::Vector &x, mfem::Vector &y) const { // Check that the input vector is the correct size if (x.Size() != m_nPhi) { MFEM_ABORT("Input vector x has size " + std::to_string(x.Size()) + ", expected " + std::to_string(m_nPhi)); } if (y.Size() != m_nPhi) { MFEM_ABORT("Output vector y has size " + std::to_string(y.Size()) + ", expected " + std::to_string(m_nPhi)); } // Check that the operators are set if (m_QOp == nullptr) { MFEM_ABORT("QOp is null in SchurCompliment::Mult"); } if (m_DOp == nullptr) { MFEM_ABORT("DOp is null in SchurCompliment::Mult"); } if (m_MOp == nullptr) { MFEM_ABORT("MOp is null in SchurCompliment::Mult"); } if (m_GradInvOp == nullptr) { MFEM_ABORT("GradInvOp is null in SchurCompliment::Mult"); } mfem::Vector v1(m_nTheta); // M * x m_MOp -> Mult(x, v1); // M * x mfem::Vector v2(m_nTheta); // GradInv * M * x m_GradInvOp -> Mult(v1, v2); // GradInv * M * x mfem::Vector v3(m_nPhi); // Q * GradInv * M * x m_QOp -> Mult(v2, v3); // Q * GradInv * M * x mfem::Vector v4(m_nPhi); // D * x m_DOp -> Mult(x, v4); // D * x subtract(v4, v3, y); // (D - Q * GradInv * M) * x }