#include "gridfire/engine/engine_graph.h" #include "gridfire/reaction/reaction.h" #include "gridfire/network.h" #include "gridfire/screening/screening_types.h" #include "gridfire/engine/procedures/priming.h" #include "gridfire/partition/partition_ground.h" #include "gridfire/engine/procedures/construction.h" #include "fourdst/composition/species.h" #include "fourdst/composition/atomicSpecies.h" #include "quill/LogMacros.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "cppad/cppad.hpp" #include "cppad/utility/sparse_rc.hpp" #include "cppad/utility/sparse_rcv.hpp" namespace gridfire { GraphEngine::GraphEngine( const fourdst::composition::Composition &composition, const BuildDepthType buildDepth ): GraphEngine(composition, partition::GroundStatePartitionFunction(), buildDepth) {} GraphEngine::GraphEngine( const fourdst::composition::Composition &composition, const partition::PartitionFunction& partitionFunction, const BuildDepthType buildDepth) : m_reactions(build_reaclib_nuclear_network(composition, buildDepth, false)), m_partitionFunction(partitionFunction.clone()), m_depth(buildDepth) { syncInternalMaps(); } GraphEngine::GraphEngine( const reaction::LogicalReactionSet &reactions ) : m_reactions(reactions) { syncInternalMaps(); } StepDerivatives GraphEngine::calculateRHSAndEnergy( const std::vector &Y, const double T9, const double rho ) const { if (m_usePrecomputation) { std::vector bare_rates; std::vector bare_reverse_rates; bare_rates.reserve(m_reactions.size()); bare_reverse_rates.reserve(m_reactions.size()); for (const auto& reaction: m_reactions) { bare_rates.push_back(reaction.calculate_rate(T9)); bare_reverse_rates.push_back(calculateReverseRate(reaction, T9)); } // --- The public facing interface can always use the precomputed version since taping is done internally --- return calculateAllDerivativesUsingPrecomputation(Y, bare_rates, bare_reverse_rates, T9, rho); } else { return calculateAllDerivatives(Y, T9, rho); } } void GraphEngine::syncInternalMaps() { LOG_INFO(m_logger, "Synchronizing internal maps for REACLIB graph network (serif::network::GraphNetwork)..."); collectNetworkSpecies(); populateReactionIDMap(); populateSpeciesToIndexMap(); collectAtomicReverseRateAtomicBases(); generateStoichiometryMatrix(); reserveJacobianMatrix(); recordADTape(); const size_t n = m_rhsADFun.Domain(); const size_t m = m_rhsADFun.Range(); std::vector select_domain(n, true); std::vector select_range(m, true); m_rhsADFun.subgraph_sparsity(select_domain, select_range, false, m_full_jacobian_sparsity_pattern); m_jac_work.clear(); precomputeNetwork(); LOG_INFO(m_logger, "Internal maps synchronized. Network contains {} species and {} reactions.", m_networkSpecies.size(), m_reactions.size()); } // --- Network Graph Construction Methods --- void GraphEngine::collectNetworkSpecies() { m_networkSpecies.clear(); m_networkSpeciesMap.clear(); std::set uniqueSpeciesNames; for (const auto& reaction: m_reactions) { for (const auto& reactant: reaction.reactants()) { uniqueSpeciesNames.insert(reactant.name()); } for (const auto& product: reaction.products()) { uniqueSpeciesNames.insert(product.name()); } } for (const auto& name: uniqueSpeciesNames) { auto it = fourdst::atomic::species.find(std::string(name)); if (it != fourdst::atomic::species.end()) { m_networkSpecies.push_back(it->second); m_networkSpeciesMap.insert({name, it->second}); } else { LOG_ERROR(m_logger, "Species '{}' not found in global atomic species database.", name); m_logger->flush_log(); throw std::runtime_error("Species not found in global atomic species database: " + std::string(name)); } } } void GraphEngine::populateReactionIDMap() { LOG_TRACE_L1(m_logger, "Populating reaction ID map for REACLIB graph network (serif::network::GraphNetwork)..."); m_reactionIDMap.clear(); for (auto& reaction: m_reactions) { m_reactionIDMap.emplace(reaction.id(), &reaction); } LOG_TRACE_L1(m_logger, "Populated {} reactions in the reaction ID map.", m_reactionIDMap.size()); } void GraphEngine::populateSpeciesToIndexMap() { m_speciesToIndexMap.clear(); for (size_t i = 0; i < m_networkSpecies.size(); ++i) { m_speciesToIndexMap.insert({m_networkSpecies[i], i}); } } void GraphEngine::reserveJacobianMatrix() { // The implementation of this function (and others) constrains this nuclear network to a constant temperature and density during // each evaluation. size_t numSpecies = m_networkSpecies.size(); m_jacobianMatrix.clear(); m_jacobianMatrix.resize(numSpecies, numSpecies, false); // Sparse matrix, no initial values LOG_TRACE_L2(m_logger, "Jacobian matrix resized to {} rows and {} columns.", m_jacobianMatrix.size1(), m_jacobianMatrix.size2()); } // --- Basic Accessors and Queries --- const std::vector& GraphEngine::getNetworkSpecies() const { // Returns a constant reference to the vector of unique species in the network. LOG_TRACE_L3(m_logger, "Providing access to network species vector. Size: {}.", m_networkSpecies.size()); return m_networkSpecies; } const reaction::LogicalReactionSet& GraphEngine::getNetworkReactions() const { // Returns a constant reference to the set of reactions in the network. LOG_TRACE_L3(m_logger, "Providing access to network reactions set. Size: {}.", m_reactions.size()); return m_reactions; } bool GraphEngine::involvesSpecies(const fourdst::atomic::Species& species) const { // Checks if a given species is present in the network's species map for efficient lookup. const bool found = m_networkSpeciesMap.contains(species.name()); LOG_DEBUG(m_logger, "Checking if species '{}' is involved in the network: {}.", species.name(), found ? "Yes" : "No"); return found; } // --- Validation Methods --- bool GraphEngine::validateConservation() const { LOG_TRACE_L1(m_logger, "Validating mass (A) and charge (Z) conservation across all reactions in the network."); for (const auto& reaction : m_reactions) { uint64_t totalReactantA = 0; uint64_t totalReactantZ = 0; uint64_t totalProductA = 0; uint64_t totalProductZ = 0; // Calculate total A and Z for reactants for (const auto& reactant : reaction.reactants()) { auto it = m_networkSpeciesMap.find(reactant.name()); if (it != m_networkSpeciesMap.end()) { totalReactantA += it->second.a(); totalReactantZ += it->second.z(); } else { // This scenario indicates a severe data integrity issue: // a reactant is part of a reaction but not in the network's species map. LOG_ERROR(m_logger, "CRITICAL ERROR: Reactant species '{}' in reaction '{}' not found in network species map during conservation validation.", reactant.name(), reaction.id()); return false; } } // Calculate total A and Z for products for (const auto& product : reaction.products()) { auto it = m_networkSpeciesMap.find(product.name()); if (it != m_networkSpeciesMap.end()) { totalProductA += it->second.a(); totalProductZ += it->second.z(); } else { // Similar critical error for product species LOG_ERROR(m_logger, "CRITICAL ERROR: Product species '{}' in reaction '{}' not found in network species map during conservation validation.", product.name(), reaction.id()); return false; } } // Compare totals for conservation if (totalReactantA != totalProductA) { LOG_ERROR(m_logger, "Mass number (A) not conserved for reaction '{}': Reactants A={} vs Products A={}.", reaction.id(), totalReactantA, totalProductA); return false; } if (totalReactantZ != totalProductZ) { LOG_ERROR(m_logger, "Atomic number (Z) not conserved for reaction '{}': Reactants Z={} vs Products Z={}.", reaction.id(), totalReactantZ, totalProductZ); return false; } } LOG_TRACE_L1(m_logger, "Mass (A) and charge (Z) conservation validated successfully for all reactions."); return true; // All reactions passed the conservation check } void GraphEngine::validateComposition(const fourdst::composition::Composition &composition, double culling, double T9) { // Check if the requested network has already been cached. // PERF: Rebuilding this should be pretty fast but it may be a good point of optimization in the future. const reaction::LogicalReactionSet validationReactionSet = build_reaclib_nuclear_network(composition, false); // TODO: need some more robust method here to // A. Build the basic network from the composition's species with non zero mass fractions. // B. rebuild a new composition from the reaction set's reactants + products (with the mass fractions from the things that are only products set to 0) // C. Rebuild the reaction set from the new composition // D. Cull reactions where all reactants have mass fractions below the culling threshold. // E. Be careful about maintaining caching through all of this // This allows for dynamic network modification while retaining caching for networks which are very similar. if (validationReactionSet != m_reactions) { LOG_DEBUG(m_logger, "Reaction set not cached. Rebuilding the reaction set for T9={} and culling={}.", T9, culling); m_reactions = validationReactionSet; syncInternalMaps(); // Re-sync internal maps after updating reactions. Note this will also retrace the AD tape. } } double GraphEngine::calculateReverseRate( const reaction::Reaction &reaction, const double T9 ) const { if (!m_useReverseReactions) { LOG_TRACE_L2(m_logger, "Reverse reactions are disabled. Returning 0.0 for reverse rate of reaction '{}'.", reaction.id()); return 0.0; // If reverse reactions are not used, return 0.0 } const double expFactor = std::exp(-reaction.qValue() / (m_constants.kB * T9)); if (s_debug) { std::cout << "\texpFactor = exp(-qValue/(kB * T9))\n"; std::cout << "\texpFactor: " << expFactor << " for reaction: " << reaction.peName() << std::endl; std::cout << "\tQ-value: " << reaction.qValue() << " at T9: " << T9 << std::endl; std::cout << "\tT9: " << T9 << std::endl; std::cout << "\tkB * T9: " << m_constants.kB * T9 << std::endl; std::cout << "\tqValue/(kB * T9): " << reaction.qValue() / (m_constants.kB * T9) << std::endl; } double reverseRate = 0.0; const double forwardRate = reaction.calculate_rate(T9); if (reaction.reactants().size() == 2 && reaction.products().size() == 2) { reverseRate = calculateReverseRateTwoBody(reaction, T9, forwardRate, expFactor); } else { LOG_WARNING_LIMIT_EVERY_N(1000000, m_logger, "Reverse rate calculation for reactions with more than two reactants or products is not implemented (reaction id {}).", reaction.peName()); } LOG_TRACE_L2(m_logger, "Calculated reverse rate for reaction '{}': {:.3E} at T9={:.3E}.", reaction.id(), reverseRate, T9); return reverseRate; } double GraphEngine::calculateReverseRateTwoBody( const reaction::Reaction &reaction, const double T9, const double forwardRate, const double expFactor ) const { std::vector reactantPartitionFunctions; std::vector productPartitionFunctions; reactantPartitionFunctions.reserve(reaction.reactants().size()); productPartitionFunctions.reserve(reaction.products().size()); std::unordered_map reactantMultiplicity; std::unordered_map productMultiplicity; reactantMultiplicity.reserve(reaction.reactants().size()); productMultiplicity.reserve(reaction.products().size()); for (const auto& reactant : reaction.reactants()) { reactantMultiplicity[reactant] += 1; } for (const auto& product : reaction.products()) { productMultiplicity[product] += 1; } double reactantSymmetryFactor = 1.0; double productSymmetryFactor = 1.0; for (const auto& count : reactantMultiplicity | std::views::values) { reactantSymmetryFactor *= std::tgamma(count + 1); } for (const auto& count : productMultiplicity | std::views::values) { productSymmetryFactor *= std::tgamma(count + 1); } const double symmetryFactor = reactantSymmetryFactor / productSymmetryFactor; // Accumulate mass terms auto mass_op = [](double acc, const auto& species) { return acc * species.a(); }; const double massNumerator = std::accumulate( reaction.reactants().begin(), reaction.reactants().end(), 1.0, mass_op ); const double massDenominator = std::accumulate( reaction.products().begin(), reaction.products().end(), 1.0, mass_op ); // Accumulate partition functions auto pf_op = [&](double acc, const auto& species) { return acc * m_partitionFunction->evaluate(species.z(), species.a(), T9); }; const double partitionFunctionNumerator = std::accumulate( reaction.reactants().begin(), reaction.reactants().end(), 1.0, pf_op ); const double partitionFunctionDenominator = std::accumulate( reaction.products().begin(), reaction.products().end(), 1.0, pf_op ); const double CT = std::pow(massNumerator/massDenominator, 1.5) * (partitionFunctionNumerator/partitionFunctionDenominator); double reverseRate = forwardRate * symmetryFactor * CT * expFactor; if (!std::isfinite(reverseRate)) { return 0.0; // If the reverse rate is not finite, return 0.0 } return reverseRate; // Return the calculated reverse rate } double GraphEngine::calculateReverseRateTwoBodyDerivative( const reaction::Reaction &reaction, const double T9, const double reverseRate ) const { if (!m_useReverseReactions) { LOG_TRACE_L2(m_logger, "Reverse reactions are disabled. Returning 0.0 for reverse rate derivative of reaction '{}'.", reaction.id()); return 0.0; // If reverse reactions are not used, return 0.0 } const double d_log_kFwd = reaction.calculate_forward_rate_log_derivative(T9); auto log_deriv_pf_op = [&](double acc, const auto& species) { const double g = m_partitionFunction->evaluate(species.z(), species.a(), T9); const double dg_dT = m_partitionFunction->evaluateDerivative(species.z(), species.a(), T9); return (g == 0.0) ? acc : acc + (dg_dT / g); }; const double reactant_log_derivative_sum = std::accumulate( reaction.reactants().begin(), reaction.reactants().end(), 0.0, log_deriv_pf_op ); const double product_log_derivative_sum = std::accumulate( reaction.products().begin(), reaction.products().end(), 0.0, log_deriv_pf_op ); const double d_log_C = reactant_log_derivative_sum - product_log_derivative_sum; const double d_log_exp = reaction.qValue() / (m_constants.kB * T9 * T9); const double log_total_derivative = d_log_kFwd + d_log_C + d_log_exp; return reverseRate * log_total_derivative; // Return the derivative of the reverse rate with respect to T9 } bool GraphEngine::isUsingReverseReactions() const { return m_useReverseReactions; } void GraphEngine::setUseReverseReactions(const bool useReverse) { m_useReverseReactions = useReverse; } int GraphEngine::getSpeciesIndex(const fourdst::atomic::Species &species) const { return m_speciesToIndexMap.at(species); // Returns the index of the species in the stoichiometry matrix } std::vector GraphEngine::mapNetInToMolarAbundanceVector(const NetIn &netIn) const { std::vector Y(m_networkSpecies.size(), 0.0); // Initialize with zeros for (const auto& [symbol, entry] : netIn.composition) { Y[getSpeciesIndex(entry.isotope())] = netIn.composition.getMolarAbundance(symbol); // Map species to their molar abundance } return Y; // Return the vector of molar abundances } PrimingReport GraphEngine::primeEngine(const NetIn &netIn) { NetIn fullNetIn; fourdst::composition::Composition composition; std::vector symbols; symbols.reserve(m_networkSpecies.size()); for (const auto &symbol: m_networkSpecies) { symbols.emplace_back(symbol.name()); } composition.registerSymbol(symbols); for (const auto& [symbol, entry] : netIn.composition) { if (m_networkSpeciesMap.contains(symbol)) { composition.setMassFraction(symbol, entry.mass_fraction()); } else { composition.setMassFraction(symbol, 0.0); } } composition.finalize(true); fullNetIn.composition = composition; fullNetIn.temperature = netIn.temperature; fullNetIn.density = netIn.density; auto primingReport = primeNetwork(fullNetIn, *this); return primingReport; } BuildDepthType GraphEngine::getDepth() const { return m_depth; } void GraphEngine::rebuild(const fourdst::composition::Composition& comp, const BuildDepthType depth) { if (depth != m_depth) { m_depth = depth; m_reactions = build_reaclib_nuclear_network(comp, m_depth, false); syncInternalMaps(); // Resync internal maps after changing the depth } else { LOG_DEBUG(m_logger, "Rebuild requested with the same depth. No changes made to the network."); } } StepDerivatives GraphEngine::calculateAllDerivativesUsingPrecomputation( const std::vector &Y_in, const std::vector &bare_rates, const std::vector &bare_reverse_rates, const double T9, const double rho ) const { // --- Calculate screening factors --- const std::vector screeningFactors = m_screeningModel->calculateScreeningFactors( m_reactions, m_networkSpecies, Y_in, T9, rho ); // --- Optimized loop --- std::vector molarReactionFlows; molarReactionFlows.reserve(m_precomputedReactions.size()); for (const auto& precomp : m_precomputedReactions) { double forwardAbundanceProduct = 1.0; // bool below_threshold = false; for (size_t i = 0; i < precomp.unique_reactant_indices.size(); ++i) { const size_t reactantIndex = precomp.unique_reactant_indices[i]; const int power = precomp.reactant_powers[i]; // const double abundance = Y_in[reactantIndex]; // if (abundance < MIN_ABUNDANCE_THRESHOLD) { // below_threshold = true; // break; // } forwardAbundanceProduct *= std::pow(Y_in[reactantIndex], power); } // if (below_threshold) { // molarReactionFlows.push_back(0.0); // continue; // Skip this reaction if any reactant is below the abundance threshold // } const double bare_rate = bare_rates[precomp.reaction_index]; const double screeningFactor = screeningFactors[precomp.reaction_index]; const size_t numReactants = m_reactions[precomp.reaction_index].reactants().size(); const size_t numProducts = m_reactions[precomp.reaction_index].products().size(); const double forwardMolarReactionFlow = screeningFactor * bare_rate * precomp.symmetry_factor * forwardAbundanceProduct * std::pow(rho, numReactants > 1 ? numReactants - 1 : 0.0); double reverseMolarReactionFlow = 0.0; if (precomp.reverse_symmetry_factor != 0.0 and m_useReverseReactions) { const double bare_reverse_rate = bare_reverse_rates[precomp.reaction_index]; double reverseAbundanceProduct = 1.0; for (size_t i = 0; i < precomp.unique_product_indices.size(); ++i) { reverseAbundanceProduct *= std::pow(Y_in[precomp.unique_product_indices[i]], precomp.product_powers[i]); } reverseMolarReactionFlow = screeningFactor * bare_reverse_rate * precomp.reverse_symmetry_factor * reverseAbundanceProduct * std::pow(rho, numProducts > 1 ? numProducts - 1 : 0.0); } molarReactionFlows.push_back(forwardMolarReactionFlow - reverseMolarReactionFlow); } // --- Assemble molar abundance derivatives --- StepDerivatives result; result.dydt.assign(m_networkSpecies.size(), 0.0); // Initialize derivatives to zero for (size_t j = 0; j < m_precomputedReactions.size(); ++j) { const auto& precomp = m_precomputedReactions[j]; const double R_j = molarReactionFlows[j]; for (size_t i = 0; i < precomp.affected_species_indices.size(); ++i) { const size_t speciesIndex = precomp.affected_species_indices[i]; const int stoichiometricCoefficient = precomp.stoichiometric_coefficients[i]; // Update the derivative for this species result.dydt[speciesIndex] += static_cast(stoichiometricCoefficient) * R_j; } } // --- Calculate the nuclear energy generation rate --- double massProductionRate = 0.0; // [mol][s^-1] for (size_t i = 0; i < m_networkSpecies.size(); ++i) { const auto& species = m_networkSpecies[i]; massProductionRate += result.dydt[i] * species.mass() * m_constants.u; } result.nuclearEnergyGenerationRate = -massProductionRate * m_constants.Na * m_constants.c * m_constants.c; // [erg][s^-1][g^-1] return result; } // --- Generate Stoichiometry Matrix --- void GraphEngine::generateStoichiometryMatrix() { LOG_TRACE_L1(m_logger, "Generating stoichiometry matrix..."); // Task 1: Set dimensions and initialize the matrix size_t numSpecies = m_networkSpecies.size(); size_t numReactions = m_reactions.size(); m_stoichiometryMatrix.resize(numSpecies, numReactions, false); LOG_TRACE_L1(m_logger, "Stoichiometry matrix initialized with dimensions: {} rows (species) x {} columns (reactions).", numSpecies, numReactions); // Task 2: Populate the stoichiometry matrix // Iterate through all reactions, assign them a column index, and fill in their stoichiometric coefficients. size_t reactionColumnIndex = 0; for (const auto& reaction : m_reactions) { // Get the net stoichiometry for the current reaction std::unordered_map netStoichiometry = reaction.stoichiometry(); // Iterate through the species and their coefficients in the stoichiometry map for (const auto& [species, coefficient] : netStoichiometry) { // Find the row index for this species auto it = m_speciesToIndexMap.find(species); if (it != m_speciesToIndexMap.end()) { const size_t speciesRowIndex = it->second; // Set the matrix element. Boost.uBLAS handles sparse insertion. m_stoichiometryMatrix(speciesRowIndex, reactionColumnIndex) = coefficient; } else { // This scenario should ideally not happen if m_networkSpeciesMap and m_speciesToIndexMap are correctly synced LOG_ERROR(m_logger, "CRITICAL ERROR: Species '{}' from reaction '{}' stoichiometry not found in species to index map.", species.name(), reaction.id()); m_logger -> flush_log(); throw std::runtime_error("Species not found in species to index map: " + std::string(species.name())); } } reactionColumnIndex++; // Move to the next column for the next reaction } LOG_TRACE_L1(m_logger, "Stoichiometry matrix population complete. Number of non-zero elements: {}.", m_stoichiometryMatrix.nnz()); // Assuming nnz() exists for compressed_matrix } StepDerivatives GraphEngine::calculateAllDerivatives( const std::vector &Y_in, const double T9, const double rho ) const { return calculateAllDerivatives(Y_in, T9, rho); } StepDerivatives GraphEngine::calculateAllDerivatives( const std::vector &Y_in, const ADDouble &T9, const ADDouble &rho ) const { return calculateAllDerivatives(Y_in, T9, rho); } void GraphEngine::setScreeningModel(const screening::ScreeningType model) { m_screeningModel = screening::selectScreeningModel(model); m_screeningType = model; } screening::ScreeningType GraphEngine::getScreeningModel() const { return m_screeningType; } void GraphEngine::setPrecomputation(const bool precompute) { m_usePrecomputation = precompute; } bool GraphEngine::isPrecomputationEnabled() const { return m_usePrecomputation; } const partition::PartitionFunction & GraphEngine::getPartitionFunction() const { return *m_partitionFunction; } double GraphEngine::calculateMolarReactionFlow( const reaction::Reaction &reaction, const std::vector &Y, const double T9, const double rho ) const { return calculateMolarReactionFlow(reaction, Y, T9, rho); } void GraphEngine::generateJacobianMatrix( const std::vector &Y_dynamic, const double T9, const double rho ) { LOG_TRACE_L1(m_logger, "Generating jacobian matrix for T9={}, rho={}..", T9, rho); const size_t numSpecies = m_networkSpecies.size(); // 1. Pack the input variables into a vector for CppAD std::vector adInput(numSpecies + 2, 0.0); // +2 for T9 and rho for (size_t i = 0; i < numSpecies; ++i) { adInput[i] = Y_dynamic[i]; } adInput[numSpecies] = T9; // T9 adInput[numSpecies + 1] = rho; // rho LOG_DEBUG( m_logger, "AD Input to jacobian {}", [&]() -> std::string { std::stringstream ss; ss << std::scientific << std::setprecision(5); for (size_t i = 0; i < adInput.size(); ++i) { ss << adInput[i]; if (i < adInput.size() - 1) { ss << ", "; } } return ss.str(); }()); // 2. Calculate the full jacobian const std::vector dotY = m_rhsADFun.Jacobian(adInput); // 3. Pack jacobian vector into sparse matrix m_jacobianMatrix.clear(); for (size_t i = 0; i < numSpecies; ++i) { for (size_t j = 0; j < numSpecies; ++j) { const double value = dotY[i * (numSpecies + 2) + j]; if (std::abs(value) > MIN_JACOBIAN_THRESHOLD) { m_jacobianMatrix(i, j) = value; } } } // LOG_DEBUG( // m_logger, // "Final Jacobian is:\n{}", // [&]() -> std::string { // std::stringstream ss; // ss << std::scientific << std::setprecision(5); // for (size_t i = 0; i < m_jacobianMatrix.size1(); ++i) { // for (size_t j = 0; j < m_jacobianMatrix.size2(); ++j) { // ss << m_jacobianMatrix(i, j); // if (j < m_jacobianMatrix.size2() - 1) { // ss << ", "; // } // } // ss << "\n"; // } // return ss.str(); // }()); LOG_TRACE_L1(m_logger, "Jacobian matrix generated with dimensions: {} rows x {} columns.", m_jacobianMatrix.size1(), m_jacobianMatrix.size2()); } void GraphEngine::generateJacobianMatrix( const std::vector &Y_dynamic, const double T9, const double rho, const SparsityPattern &sparsityPattern ) { // --- Pack the input variables into a vector for CppAD --- const size_t numSpecies = m_networkSpecies.size(); std::vector x(numSpecies + 2, 0.0); for (size_t i = 0; i < numSpecies; ++i) { x[i] = Y_dynamic[i]; } x[numSpecies] = T9; x[numSpecies + 1] = rho; // --- Convert into CppAD Sparsity pattern --- const size_t nnz = sparsityPattern.size(); // Number of non-zero entries in the sparsity pattern std::vector row_indices(nnz); std::vector col_indices(nnz); for (size_t k = 0; k < nnz; ++k) { row_indices[k] = sparsityPattern[k].first; col_indices[k] = sparsityPattern[k].second; } std::vector values(nnz); const size_t num_rows_jac = numSpecies; const size_t num_cols_jac = numSpecies + 2; // +2 for T9 and rho CppAD::sparse_rc> CppAD_sparsity_pattern(num_rows_jac, num_cols_jac, nnz); for (size_t k = 0; k < nnz; ++k) { CppAD_sparsity_pattern.set(k, sparsityPattern[k].first, sparsityPattern[k].second); } CppAD::sparse_rcv, std::vector> jac_subset(CppAD_sparsity_pattern); m_rhsADFun.sparse_jac_rev( x, jac_subset, // Sparse Jacobian output m_full_jacobian_sparsity_pattern, "cppad", m_jac_work // Work vector for CppAD ); // --- Convert the sparse Jacobian back to the Boost uBLAS format --- m_jacobianMatrix.clear(); for (size_t k = 0; k < nnz; ++k) { const size_t row = jac_subset.row()[k]; const size_t col = jac_subset.col()[k]; const double value = jac_subset.val()[k]; if (std::abs(value) > MIN_JACOBIAN_THRESHOLD) { m_jacobianMatrix(row, col) = value; // Insert into the sparse matrix } } } double GraphEngine::getJacobianMatrixEntry(const int i, const int j) const { LOG_TRACE_L3(m_logger, "Getting jacobian matrix entry for {},{} = {}", i, j, m_jacobianMatrix(i, j)); return m_jacobianMatrix(i, j); } std::unordered_map GraphEngine::getNetReactionStoichiometry( const reaction::Reaction &reaction ) { return reaction.stoichiometry(); } int GraphEngine::getStoichiometryMatrixEntry( const int speciesIndex, const int reactionIndex ) const { return m_stoichiometryMatrix(speciesIndex, reactionIndex); } void GraphEngine::exportToDot(const std::string &filename) const { LOG_TRACE_L1(m_logger, "Exporting network graph to DOT file: {}", filename); std::ofstream dotFile(filename); if (!dotFile.is_open()) { LOG_ERROR(m_logger, "Failed to open file for writing: {}", filename); m_logger->flush_log(); throw std::runtime_error("Failed to open file for writing: " + filename); } dotFile << "digraph NuclearReactionNetwork {\n"; dotFile << " graph [rankdir=LR, splines=true, overlap=false, bgcolor=\"#f0f0f0\"];\n"; dotFile << " node [shape=circle, style=filled, fillcolor=\"#a7c7e7\", fontname=\"Helvetica\"];\n"; dotFile << " edge [fontname=\"Helvetica\", fontsize=10];\n\n"; // 1. Define all species as nodes dotFile << " // --- Species Nodes ---\n"; for (const auto& species : m_networkSpecies) { dotFile << " \"" << species.name() << "\" [label=\"" << species.name() << "\"];\n"; } dotFile << "\n"; // 2. Define all reactions as intermediate nodes and connect them dotFile << " // --- Reaction Edges ---\n"; for (const auto& reaction : m_reactions) { // Create a unique ID for the reaction node std::string reactionNodeId = "reaction_" + std::string(reaction.id()); // Define the reaction node (small, black dot) dotFile << " \"" << reactionNodeId << "\" [shape=point, fillcolor=black, width=0.1, height=0.1, label=\"\"];\n"; // Draw edges from reactants to the reaction node for (const auto& reactant : reaction.reactants()) { dotFile << " \"" << reactant.name() << "\" -> \"" << reactionNodeId << "\";\n"; } // Draw edges from the reaction node to products for (const auto& product : reaction.products()) { dotFile << " \"" << reactionNodeId << "\" -> \"" << product.name() << "\" [label=\"" << reaction.qValue() << " MeV\"];\n"; } dotFile << "\n"; } dotFile << "}\n"; dotFile.close(); LOG_TRACE_L1(m_logger, "Successfully exported network to {}", filename); } void GraphEngine::exportToCSV(const std::string &filename) const { LOG_TRACE_L1(m_logger, "Exporting network graph to CSV file: {}", filename); std::ofstream csvFile(filename, std::ios::out | std::ios::trunc); if (!csvFile.is_open()) { LOG_ERROR(m_logger, "Failed to open file for writing: {}", filename); m_logger->flush_log(); throw std::runtime_error("Failed to open file for writing: " + filename); } csvFile << "Reaction;Reactants;Products;Q-value;sources;rates\n"; for (const auto& reaction : m_reactions) { // Dynamic cast to REACLIBReaction to access specific properties csvFile << reaction.id() << ";"; // Reactants int count = 0; for (const auto& reactant : reaction.reactants()) { csvFile << reactant.name(); if (++count < reaction.reactants().size()) { csvFile << ","; } } csvFile << ";"; count = 0; for (const auto& product : reaction.products()) { csvFile << product.name(); if (++count < reaction.products().size()) { csvFile << ","; } } csvFile << ";" << reaction.qValue() << ";"; // Reaction coefficients auto sources = reaction.sources(); count = 0; for (const auto& source : sources) { csvFile << source; if (++count < sources.size()) { csvFile << ","; } } csvFile << ";"; // Reaction coefficients count = 0; for (const auto& rates : reaction) { csvFile << rates; if (++count < reaction.size()) { csvFile << ","; } } csvFile << "\n"; } csvFile.close(); LOG_TRACE_L1(m_logger, "Successfully exported network graph to {}", filename); } std::unordered_map GraphEngine::getSpeciesTimescales( const std::vector &Y, const double T9, const double rho ) const { auto [dydt, _] = calculateAllDerivatives(Y, T9, rho); std::unordered_map speciesTimescales; speciesTimescales.reserve(m_networkSpecies.size()); for (size_t i = 0; i < m_networkSpecies.size(); ++i) { double timescale = std::numeric_limits::infinity(); const auto species = m_networkSpecies[i]; if (std::abs(dydt[i]) > 0.0) { timescale = std::abs(Y[i] / dydt[i]); } speciesTimescales.emplace(species, timescale); } return speciesTimescales; } void GraphEngine::update(const NetIn &netIn) { // No-op for GraphEngine, as it does not support manually triggering updates. } void GraphEngine::recordADTape() { LOG_TRACE_L1(m_logger, "Recording AD tape for the RHS calculation..."); // Task 1: Set dimensions and initialize the matrix const size_t numSpecies = m_networkSpecies.size(); if (numSpecies == 0) { LOG_ERROR(m_logger, "Cannot record AD tape: No species in the network."); m_logger->flush_log(); throw std::runtime_error("Cannot record AD tape: No species in the network."); } const size_t numADInputs = numSpecies + 2; // Note here that by not letting T9 and rho be independent variables, we are constraining the network to a constant temperature and density during each evaluation. // --- CppAD Tape Recording --- // 1. Declare independent variable (adY) // We also initialize the dummy variable for tape recording (these tell CppAD what the derivative chain looks like). // Their numeric values are irrelevant except for in so far as they avoid numerical instabilities. // Distribute total mass fraction uniformly between species in the dummy variable space const auto uniformMassFraction = static_cast>(1.0 / static_cast(numSpecies)); std::vector> adInput(numADInputs, uniformMassFraction); adInput[numSpecies] = 1.0; // Dummy T9 adInput[numSpecies + 1] = 1.0; // Dummy rho // 3. Declare independent variables (what CppAD will differentiate wrt.) // This also beings the tape recording process. CppAD::Independent(adInput); std::vector> adY(numSpecies); for(size_t i = 0; i < numSpecies; ++i) { adY[i] = adInput[i]; } const CppAD::AD adT9 = adInput[numSpecies]; const CppAD::AD adRho = adInput[numSpecies + 1]; // 5. Call the actual templated function // We let T9 and rho be constant, so we pass them as fixed values. auto [dydt, nuclearEnergyGenerationRate] = calculateAllDerivatives>(adY, adT9, adRho); m_rhsADFun.Dependent(adInput, dydt); LOG_TRACE_L1(m_logger, "AD tape recorded successfully for the RHS calculation. Number of independent variables: {}.", adInput.size()); } void GraphEngine::collectAtomicReverseRateAtomicBases() { m_atomicReverseRates.clear(); m_atomicReverseRates.reserve(m_reactions.size()); for (const auto& reaction: m_reactions) { if (reaction.qValue() != 0.0) { m_atomicReverseRates.push_back(std::make_unique(reaction, *this)); } else { m_atomicReverseRates.push_back(nullptr); } } } void GraphEngine::precomputeNetwork() { LOG_TRACE_L1(m_logger, "Pre-computing constant components of GraphNetwork state..."); // --- Reverse map for fast species lookups --- std::unordered_map speciesIndexMap; for (size_t i = 0; i < m_networkSpecies.size(); ++i) { speciesIndexMap[m_networkSpecies[i]] = i; } m_precomputedReactions.clear(); m_precomputedReactions.reserve(m_reactions.size()); for (size_t i = 0; i < m_reactions.size(); ++i) { const auto& reaction = m_reactions[i]; PrecomputedReaction precomp; precomp.reaction_index = i; // --- Precompute forward reaction information --- // Count occurrences for each reactant to determine powers and symmetry std::unordered_map reactantCounts; for (const auto& reactant: reaction.reactants()) { size_t reactantIndex = speciesIndexMap.at(reactant); reactantCounts[reactantIndex]++; } double symmetryDenominator = 1.0; for (const auto& [index, count] : reactantCounts) { precomp.unique_reactant_indices.push_back(index); precomp.reactant_powers.push_back(count); symmetryDenominator *= std::tgamma(count + 1); } precomp.symmetry_factor = 1.0/symmetryDenominator; // --- Precompute reverse reaction information --- if (reaction.qValue() != 0.0) { std::unordered_map productCounts; for (const auto& product : reaction.products()) { productCounts[speciesIndexMap.at(product)]++; } double reverseSymmetryDenominator = 1.0; for (const auto& [index, count] : productCounts) { precomp.unique_product_indices.push_back(index); precomp.product_powers.push_back(count); reverseSymmetryDenominator *= std::tgamma(count + 1); } precomp.reverse_symmetry_factor = 1.0/reverseSymmetryDenominator; } else { precomp.unique_product_indices.clear(); precomp.product_powers.clear(); precomp.reverse_symmetry_factor = 0.0; // No reverse reaction for Q = 0 reactions } // --- Precompute stoichiometry information --- const auto stoichiometryMap = reaction.stoichiometry(); precomp.affected_species_indices.reserve(stoichiometryMap.size()); precomp.stoichiometric_coefficients.reserve(stoichiometryMap.size()); for (const auto& [species, coeff] : stoichiometryMap) { precomp.affected_species_indices.push_back(speciesIndexMap.at(species)); precomp.stoichiometric_coefficients.push_back(coeff); } m_precomputedReactions.push_back(std::move(precomp)); } } bool GraphEngine::AtomicReverseRate::forward( const size_t p, const size_t q, const CppAD::vector &vx, CppAD::vector &vy, const CppAD::vector &tx, CppAD::vector &ty ) { if ( p != 0) { return false; } const double T9 = tx[0]; const double reverseRate = m_engine.calculateReverseRate(m_reaction, T9); // std::cout << m_reaction.peName() << " reverseRate: " << reverseRate << " at T9: " << T9 << "\n"; ty[0] = reverseRate; // Store the reverse rate in the output vector if (vx.size() > 0) { vy[0] = vx[0]; } return true; } bool GraphEngine::AtomicReverseRate::reverse( size_t q, const CppAD::vector &tx, const CppAD::vector &ty, CppAD::vector &px, const CppAD::vector &py ) { const double T9 = tx[0]; const double reverseRate = ty[0]; const double derivative = m_engine.calculateReverseRateTwoBodyDerivative(m_reaction, T9, reverseRate); // std::cout << m_reaction.peName() << " reverseRate Derivative: " << derivative << "\n"; px[0] = py[0] * derivative; // Return the derivative of the reverse rate with respect to T9 return true; } bool GraphEngine::AtomicReverseRate::for_sparse_jac( size_t q, const CppAD::vector> &r, CppAD::vector> &s ) { s[0] = r[0]; return true; } bool GraphEngine::AtomicReverseRate::rev_sparse_jac( size_t q, const CppAD::vector> &rt, CppAD::vector> &st ) { st[0] = rt[0]; return true; } }