#pragma once #include #include "fourdst/composition/atomicSpecies.h" #include "fourdst/logging/logging.h" #include "quill/Logger.h" #include #include #include #include "cppad/cppad.hpp" #include "xxhash64.h" /** * @file reaction.h * @brief Defines classes for representing and managing nuclear reactions. * * This file contains the core data structures for handling nuclear reactions, * including individual reactions from specific sources (`Reaction`), collections * of reactions (`ReactionSet`), and logical reactions that aggregate rates from * multiple sources (`LogicalReaction`, `LogicalReactionSet`). */ namespace gridfire::reaction { /** * @struct RateCoefficientSet * @brief Holds the seven coefficients for the REACLIB rate equation. * * This struct stores the parameters (a0-a6) used to calculate reaction rates * as a function of temperature. */ struct RateCoefficientSet { double a0; ///< Coefficient a0 double a1; ///< Coefficient a1 double a2; ///< Coefficient a2 double a3; ///< Coefficient a3 double a4; ///< Coefficient a4 double a5; ///< Coefficient a5 double a6; ///< Coefficient a6 /** * @brief Overloads the stream insertion operator for easy printing. * @param os The output stream. * @param r The RateCoefficientSet to print. * @return The output stream. */ friend std::ostream& operator<<(std::ostream& os, const RateCoefficientSet& r) { os << "[" << r.a0 << ", " << r.a1 << ", " << r.a2 << ", " << r.a3 << ", " << r.a4 << ", " << r.a5 << ", " << r.a6 << "]"; return os; } }; /** * @class Reaction * @brief Represents a single nuclear reaction from a specific data source. * * This class encapsulates all properties of a single nuclear reaction as defined * in formats like REACLIB, including reactants, products, Q-value, and rate * coefficients from a particular evaluation (source). * * Example: * @code * // Assuming species and rate coefficients are defined * Reaction p_gamma_d( * "H_1_H_1_to_H_2", "p(p,g)d", 1, {H_1, H_1}, {H_2}, 5.493, "st08", rate_coeffs * ); * double rate = p_gamma_d.calculate_rate(0.1); // T9 = 0.1 * @endcode */ class Reaction { public: /** * @brief Virtual destructor. */ virtual ~Reaction() = default; /** * @brief Constructs a Reaction object. * @param id A unique identifier for the reaction. * @param peName The name in (projectile, ejectile) notation (e.g., "p(p,g)d"). * @param chapter The REACLIB chapter number, defining reaction structure. * @param reactants A vector of reactant species. * @param products A vector of product species. * @param qValue The Q-value of the reaction in MeV. * @param label The source label for the rate data (e.g., "wc12", "st08"). * @param sets The set of rate coefficients. * @param reverse True if this is a reverse reaction rate. */ Reaction( const std::string_view id, const std::string_view peName, const int chapter, const std::vector &reactants, const std::vector &products, const double qValue, const std::string_view label, const RateCoefficientSet &sets, const bool reverse = false); /** * @brief Calculates the reaction rate for a given temperature. * @param T9 The temperature in units of 10^9 K. * @return The calculated reaction rate. */ [[nodiscard]] virtual double calculate_rate(const double T9) const; /** * @brief Calculates the reaction rate for a given temperature using CppAD types. * @param T9 The temperature in units of 10^9 K, as a CppAD::AD. * @return The calculated reaction rate, as a CppAD::AD. */ [[nodiscard]] virtual CppAD::AD calculate_rate(const CppAD::AD T9) const; [[nodiscard]] virtual double calculate_forward_rate_log_derivative(const double T9) const; /** * @brief Gets the reaction name in (projectile, ejectile) notation. * @return The reaction name (e.g., "p(p,g)d"). */ [[nodiscard]] virtual std::string_view peName() const { return m_peName; } /** * @brief Gets the REACLIB chapter number. * @return The chapter number. */ [[nodiscard]] int chapter() const { return m_chapter; } /** * @brief Gets the source label for the rate data. * @return The source label (e.g., "wc12w", "st08"). */ [[nodiscard]] std::string_view sourceLabel() const { return m_sourceLabel; } /** * @brief Gets the set of rate coefficients. * @return A const reference to the RateCoefficientSet. */ [[nodiscard]] const RateCoefficientSet& rateCoefficients() const { return m_rateCoefficients; } /** * @brief Checks if the reaction involves a given species as a reactant or product. * @param species The species to check for. * @return True if the species is involved, false otherwise. */ [[nodiscard]] bool contains(const fourdst::atomic::Species& species) const; /** * @brief Checks if the reaction involves a given species as a reactant. * @param species The species to check for. * @return True if the species is a reactant, false otherwise. */ [[nodiscard]] bool contains_reactant(const fourdst::atomic::Species& species) const; /** * @brief Checks if the reaction involves a given species as a product. * @param species The species to check for. * @return True if the species is a product, false otherwise. */ [[nodiscard]] bool contains_product(const fourdst::atomic::Species& species) const; /** * @brief Gets a set of all unique species involved in the reaction. * @return An unordered_set of all reactant and product species. */ [[nodiscard]] std::unordered_set all_species() const; /** * @brief Gets a set of all unique reactant species. * @return An unordered_set of reactant species. */ [[nodiscard]] std::unordered_set reactant_species() const; /** * @brief Gets a set of all unique product species. * @return An unordered_set of product species. */ [[nodiscard]] std::unordered_set product_species() const; /** * @brief Gets the number of unique species involved in the reaction. * @return The count of unique species. */ [[nodiscard]] size_t num_species() const; /** * @brief Calculates the stoichiometric coefficient for a given species. * @param species The species for which to find the coefficient. * @return The stoichiometric coefficient (negative for reactants, positive for products). */ [[nodiscard]] int stoichiometry(const fourdst::atomic::Species& species) const; /** * @brief Gets a map of all species to their stoichiometric coefficients. * @return An unordered_map from species to their integer coefficients. */ [[nodiscard]] std::unordered_map stoichiometry() const; /** * @brief Gets the unique identifier of the reaction. * @return The reaction ID. */ [[nodiscard]] std::string_view id() const { return m_id; } /** * @brief Gets the Q-value of the reaction. * @return The Q-value in whatever units the reaction was defined in (usually MeV). */ [[nodiscard]] double qValue() const { return m_qValue; } /** * @brief Gets the vector of reactant species. * @return A const reference to the vector of reactants. */ [[nodiscard]] const std::vector& reactants() const { return m_reactants; } /** * @brief Gets the vector of product species. * @return A const reference to the vector of products. */ [[nodiscard]] const std::vector& products() const { return m_products; } /** * @brief Checks if this is a reverse reaction rate. * @return True if it is a reverse rate, false otherwise. */ [[nodiscard]] bool is_reverse() const { return m_reverse; } /** * @brief Calculates the excess energy from the mass difference of reactants and products. * @return The excess energy in MeV. */ [[nodiscard]] double excess_energy() const; /** * @brief Compares this reaction with another for equality based on their IDs. * @param other The other Reaction to compare with. * @return True if the reaction IDs are the same. */ bool operator==(const Reaction& other) const { return m_id == other.m_id; } /** * @brief Compares this reaction with another for inequality. * @param other The other Reaction to compare with. * @return True if the reactions are not equal. */ bool operator!=(const Reaction& other) const { return !(*this == other); } /** * @brief Computes a hash for the reaction based on its ID. * @param seed The seed for the hash function. * @return A 64-bit hash value. * @details Uses the XXHash64 algorithm on the reaction's ID string. */ [[nodiscard]] uint64_t hash(uint64_t seed = 0) const; friend std::ostream& operator<<(std::ostream& os, const Reaction& r) { return os << "(Reaction:" << r.m_id << ")"; } protected: quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log"); std::string m_id; ///< Unique identifier for the reaction (e.g., "h1+h1=>h2+e+nu"). std::string m_peName; ///< Name of the reaction in (projectile, ejectile) notation (e.g. "p(p,g)d"). int m_chapter; ///< Chapter number from the REACLIB database, defining the reaction structure. double m_qValue = 0.0; ///< Q-value of the reaction in MeV. std::vector m_reactants; ///< Reactants of the reaction. std::vector m_products; ///< Products of the reaction. std::string m_sourceLabel; ///< Source label for the rate data (e.g., "wc12w", "st08"). RateCoefficientSet m_rateCoefficients; ///< The seven rate coefficients. bool m_reverse = false; ///< Flag indicating if this is a reverse reaction rate. private: /** * @brief Template implementation for calculating the reaction rate. * @tparam T The numeric type (double or CppAD::AD). * @param T9 The temperature in units of 10^9 K. * @return The calculated reaction rate. * @details The rate is calculated using the standard REACLIB formula: * `rate = exp(a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + a6*ln(T9))` */ template [[nodiscard]] T calculate_rate(const T T9) const { const T T913 = CppAD::pow(T9, 1.0/3.0); const T T953 = CppAD::pow(T9, 5.0/3.0); const T logT9 = CppAD::log(T9); const T exponent = m_rateCoefficients.a0 + m_rateCoefficients.a1 / T9 + m_rateCoefficients.a2 / T913 + m_rateCoefficients.a3 * T913 + m_rateCoefficients.a4 * T9 + m_rateCoefficients.a5 * T953 + m_rateCoefficients.a6 * logT9; return CppAD::exp(exponent); } }; /** * @class LogicalReaction * @brief Represents a "logical" reaction that aggregates rates from multiple sources. * * A LogicalReaction shares the same reactants and products but combines rates * from different evaluations (e.g., "wc12" and "st08" for the same physical * reaction). The total rate is the sum of the individual rates. * It inherits from Reaction, using the properties of the first provided reaction * as its base properties (reactants, products, Q-value, etc.). */ class LogicalReaction final : public Reaction { public: /** * @brief Constructs a LogicalReaction from a vector of `Reaction` objects. * @param reactions A vector of reactions that represent the same logical process. * @throws std::runtime_error if the provided reactions have inconsistent Q-values. */ explicit LogicalReaction(const std::vector &reactions); /** * @brief Adds another `Reaction` source to this logical reaction. * @param reaction The reaction to add. * @throws std::runtime_error if the reaction has a different `peName`, a duplicate * source label, or an inconsistent Q-value. */ void add_reaction(const Reaction& reaction); /** * @brief Gets the number of source rates contributing to this logical reaction. * @return The number of aggregated rates. */ [[nodiscard]] size_t size() const { return m_rates.size(); } /** * @brief Gets the list of source labels for the aggregated rates. * @return A vector of source label strings. */ [[nodiscard]] std::vector sources() const { return m_sources; } /** * @brief Calculates the total reaction rate by summing all source rates. * @param T9 The temperature in units of 10^9 K. * @return The total calculated reaction rate. */ [[nodiscard]] double calculate_rate(const double T9) const override; [[nodiscard]] virtual double calculate_forward_rate_log_derivative(const double T9) const override; /** * @brief Calculates the total reaction rate using CppAD types. * @param T9 The temperature in units of 10^9 K, as a CppAD::AD. * @return The total calculated reaction rate, as a CppAD::AD. */ [[nodiscard]] CppAD::AD calculate_rate(const CppAD::AD T9) const override; /** @name Iterators * Provides iterators to loop over the rate coefficient sets. */ ///@{ auto begin() { return m_rates.begin(); } [[nodiscard]] auto begin() const { return m_rates.cbegin(); } auto end() { return m_rates.end(); } [[nodiscard]] auto end() const { return m_rates.cend(); } ///@} /// friend std::ostream& operator<<(std::ostream& os, const LogicalReaction& r) { os << "(LogicalReaction: " << r.id() << ", reverse: " << r.is_reverse() << ")"; return os; } private: std::vector m_sources; ///< List of source labels. std::vector m_rates; ///< List of rate coefficient sets from each source. private: /** * @brief Template implementation for calculating the total reaction rate. * @tparam T The numeric type (double or CppAD::AD). * @param T9 The temperature in units of 10^9 K. * @return The total calculated reaction rate. * @details This method iterates through all stored `RateCoefficientSet`s, * calculates the rate for each, and returns their sum. */ template [[nodiscard]] T calculate_rate(const T T9) const { T sum = static_cast(0.0); const T T913 = CppAD::pow(T9, 1.0/3.0); const T T953 = CppAD::pow(T9, 5.0/3.0); const T logT9 = CppAD::log(T9); // ReSharper disable once CppUseStructuredBinding for (const auto& rate : m_rates) { const T exponent = rate.a0 + rate.a1 / T9 + rate.a2 / T913 + rate.a3 * T913 + rate.a4 * T9 + rate.a5 * T953 + rate.a6 * logT9; sum += CppAD::exp(exponent); } return sum; } }; template class TemplatedReactionSet final { public: /** * @brief Constructs a ReactionSet from a vector of reactions. * @param reactions The initial vector of Reaction objects. */ explicit TemplatedReactionSet(std::vector reactions); /** * @brief Copy constructor. * @param other The ReactionSet to copy. */ TemplatedReactionSet(const TemplatedReactionSet& other); /** * @brief Copy assignment operator. * @param other The ReactionSet to assign from. * @return A reference to this ReactionSet. */ TemplatedReactionSet& operator=(const TemplatedReactionSet& other); /** * @brief Adds a reaction to the set. * @param reaction The Reaction to add. */ void add_reaction(ReactionT reaction); /** * @brief Removes a reaction from the set. * @param reaction The Reaction to remove. */ void remove_reaction(const ReactionT& reaction); /** * @brief Checks if the set contains a reaction with the given ID. * @param id The ID of the reaction to find. * @return True if the reaction is in the set, false otherwise. */ [[nodiscard]] bool contains(const std::string_view& id) const; /** * @brief Checks if the set contains the given reaction. * @param reaction The Reaction to find. * @return True if the reaction is in the set, false otherwise. */ [[nodiscard]] bool contains(const Reaction& reaction) const; /** * @brief Gets the number of reactions in the set. * @return The size of the set. */ [[nodiscard]] size_t size() const { return m_reactions.size(); } /** * @brief Removes all reactions from the set. */ void clear(); /** * @brief Checks if any reaction in the set involves the given species. * @param species The species to check for. * @return True if the species is involved in any reaction. */ [[nodiscard]] bool contains_species(const fourdst::atomic::Species& species) const; /** * @brief Checks if any reaction in the set contains the given species as a reactant. * @param species The species to check for. * @return True if the species is a reactant in any reaction. */ [[nodiscard]] bool contains_reactant(const fourdst::atomic::Species& species) const; /** * @brief Checks if any reaction in the set contains the given species as a product. * @param species The species to check for. * @return True if the species is a product in any reaction. */ [[nodiscard]] bool contains_product(const fourdst::atomic::Species& species) const; /** * @brief Accesses a reaction by its index. * @param index The index of the reaction to access. * @return A const reference to the Reaction. * @throws std::out_of_range if the index is out of bounds. */ [[nodiscard]] const ReactionT& operator[](size_t index) const; /** * @brief Accesses a reaction by its ID. * @param id The ID of the reaction to access. * @return A const reference to the Reaction. * @throws std::out_of_range if no reaction with the given ID exists. */ [[nodiscard]] const ReactionT& operator[](const std::string_view& id) const; /** * @brief Compares this set with another for equality. * @param other The other ReactionSet to compare with. * @return True if the sets are equal (same size and hash). */ bool operator==(const TemplatedReactionSet& other) const; /** * @brief Compares this set with another for inequality. * @param other The other ReactionSet to compare with. * @return True if the sets are not equal. */ bool operator!=(const TemplatedReactionSet& other) const; /** * @brief Computes a hash for the entire set. * @param seed The seed for the hash function. * @return A 64-bit hash value. * @details The algorithm computes the hash of each individual reaction, * sorts the hashes, and then computes a final hash over the sorted list * of hashes. This ensures the hash is order-independent. */ [[nodiscard]] uint64_t hash(uint64_t seed = 0) const; /** @name Iterators * Provides iterators to loop over the reactions in the set. */ ///@{ auto begin() { return m_reactions.begin(); } [[nodiscard]] auto begin() const { return m_reactions.cbegin(); } auto end() { return m_reactions.end(); } [[nodiscard]] auto end() const { return m_reactions.cend(); } ///@} /// friend std::ostream& operator<<(std::ostream& os, const TemplatedReactionSet& r) { os << "(ReactionSet: ["; int counter = 0; for (const auto& reaction : r.m_reactions) { os << reaction; if (counter < r.m_reactions.size() - 2) { os << ", "; } else if (counter == r.m_reactions.size() - 2) { os << " and "; } ++counter; } os << "])"; return os; } [[nodiscard]] std::unordered_set getReactionSetSpecies() const; private: quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log"); std::vector m_reactions; std::string m_id; std::unordered_map m_reactionNameMap; ///< Maps reaction IDs to Reaction objects for quick lookup. }; using ReactionSet = TemplatedReactionSet; ///< A set of reactions, typically from a single source like REACLIB. using LogicalReactionSet = TemplatedReactionSet; ///< A set of logical reactions. LogicalReactionSet packReactionSetToLogicalReactionSet(const ReactionSet& reactionSet); template TemplatedReactionSet::TemplatedReactionSet( std::vector reactions ) : m_reactions(std::move(reactions)) { if (m_reactions.empty()) { return; // Case where the reactions will be added later. } m_reactionNameMap.reserve(reactions.size()); for (const auto& reaction : m_reactions) { m_id += reaction.id(); m_reactionNameMap.emplace(reaction.id(), reaction); } } template TemplatedReactionSet::TemplatedReactionSet(const TemplatedReactionSet &other) { m_reactions.reserve(other.m_reactions.size()); for (const auto& reaction_ptr: other.m_reactions) { m_reactions.push_back(reaction_ptr); } m_reactionNameMap.reserve(other.m_reactionNameMap.size()); for (const auto& reaction_ptr : m_reactions) { m_reactionNameMap.emplace(reaction_ptr.id(), reaction_ptr); } } template TemplatedReactionSet& TemplatedReactionSet::operator=(const TemplatedReactionSet &other) { if (this != &other) { TemplatedReactionSet temp(other); std::swap(m_reactions, temp.m_reactions); std::swap(m_reactionNameMap, temp.m_reactionNameMap); } return *this; } template void TemplatedReactionSet::add_reaction(ReactionT reaction) { m_reactions.emplace_back(reaction); m_id += m_reactions.back().id(); m_reactionNameMap.emplace(m_reactions.back().id(), m_reactions.back()); } template void TemplatedReactionSet::remove_reaction(const ReactionT& reaction) { if (!m_reactionNameMap.contains(std::string(reaction.id()))) { return; } m_reactionNameMap.erase(std::string(reaction.id())); std::erase_if(m_reactions, [&reaction](const Reaction& r) { return r == reaction; }); } template bool TemplatedReactionSet::contains(const std::string_view& id) const { for (const auto& reaction : m_reactions) { if (reaction.id() == id) { return true; } } return false; } template bool TemplatedReactionSet::contains(const Reaction& reaction) const { for (const auto& r : m_reactions) { if (r == reaction) { return true; } } return false; } template void TemplatedReactionSet::clear() { m_reactions.clear(); m_reactionNameMap.clear(); } template bool TemplatedReactionSet::contains_species(const fourdst::atomic::Species& species) const { for (const auto& reaction : m_reactions) { if (reaction.contains(species)) { return true; } } return false; } template bool TemplatedReactionSet::contains_reactant(const fourdst::atomic::Species& species) const { for (const auto& r : m_reactions) { if (r.contains_reactant(species)) { return true; } } return false; } template bool TemplatedReactionSet::contains_product(const fourdst::atomic::Species& species) const { for (const auto& r : m_reactions) { if (r.contains_product(species)) { return true; } } return false; } template const ReactionT& TemplatedReactionSet::operator[](const size_t index) const { if (index >= m_reactions.size()) { m_logger -> flush_log(); throw std::out_of_range("Index" + std::to_string(index) + " out of range for ReactionSet of size " + std::to_string(m_reactions.size()) + "."); } return m_reactions[index]; } template const ReactionT& TemplatedReactionSet::operator[](const std::string_view& id) const { if (auto it = m_reactionNameMap.find(std::string(id)); it != m_reactionNameMap.end()) { return it->second; } m_logger -> flush_log(); throw std::out_of_range("Species " + std::string(id) + " does not exist in ReactionSet."); } template bool TemplatedReactionSet::operator==(const TemplatedReactionSet& other) const { if (size() != other.size()) { return false; } return hash() == other.hash(); } template bool TemplatedReactionSet::operator!=(const TemplatedReactionSet& other) const { return !(*this == other); } template uint64_t TemplatedReactionSet::hash(uint64_t seed) const { if (m_reactions.empty()) { return XXHash64::hash(nullptr, 0, seed); } std::vector individualReactionHashes; individualReactionHashes.reserve(m_reactions.size()); for (const auto& reaction : m_reactions) { individualReactionHashes.push_back(reaction.hash(seed)); } std::ranges::sort(individualReactionHashes); const auto data = static_cast(individualReactionHashes.data()); const size_t sizeInBytes = individualReactionHashes.size() * sizeof(uint64_t); return XXHash64::hash(data, sizeInBytes, seed); } template std::unordered_set TemplatedReactionSet::getReactionSetSpecies() const { std::unordered_set species; for (const auto& reaction : m_reactions) { const auto reactionSpecies = reaction.all_species(); species.insert(reactionSpecies.begin(), reactionSpecies.end()); } return species; } }