Files
GridFire/tests/graphnet_sandbox/main.cpp

291 lines
10 KiB
C++
Raw Normal View History

#include <iostream>
2025-06-29 14:54:25 -04:00
#include <fstream>
#include "gridfire/engine/engine_graph.h"
2025-07-01 11:41:14 -04:00
#include "gridfire/engine/views/engine_adaptive.h"
#include "gridfire/solver/strategies/CVODE_solver_strategy.h"
#include "gridfire/policy/stellar_policy.h"
#include "gridfire/utils/table_format.h"
2025-06-29 14:54:25 -04:00
#include "gridfire/network.h"
#include "fourdst/composition/composition.h"
#include "fourdst/plugin/bundle/bundle.h"
2025-06-29 14:54:25 -04:00
#include "fourdst/logging/logging.h"
#include "quill/Logger.h"
#include "quill/LogMacros.h"
#include "quill/Backend.h"
#include <clocale>
#include <functional>
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "gridfire/exceptions/error_solver.h"
#include <boost/json/src.hpp>
2025-06-29 14:54:25 -04:00
#include "gridfire/reaction/reaclib.h"
#include "gridfire/solver/strategies/CVODE_solver_strategy.h"
static std::terminate_handler g_previousHandler = nullptr;
boost::json::object g_reaction_contribution_history;
static std::vector<std::pair<double, std::unordered_map<std::string, std::pair<double, double>>>> g_callbackHistory;
static bool s_wrote_abundance_history = false;
static bool s_wrote_reaction_history = false;
void quill_terminate_handler();
inline std::unique_ptr<gridfire::partition::PartitionFunction> build_partition_function() {
using gridfire::partition::BasePartitionType;
const auto partitionFunction = gridfire::partition::CompositePartitionFunction({
BasePartitionType::RauscherThielemann,
BasePartitionType::GroundState
});
return std::make_unique<gridfire::partition::CompositePartitionFunction>(partitionFunction);
2025-06-29 14:54:25 -04:00
}
gridfire::NetIn init(const double temp) {
std::setlocale(LC_ALL, "");
2025-06-29 14:54:25 -04:00
g_previousHandler = std::set_terminate(quill_terminate_handler);
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
logger->set_log_level(quill::LogLevel::TraceL2);
2025-06-29 14:54:25 -04:00
using namespace gridfire;
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
2025-07-14 14:54:22 -04:00
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
NetIn netIn;
netIn.composition = composition;
netIn.temperature = temp;
netIn.density = 1.5e2;
2025-07-14 14:54:22 -04:00
netIn.energy = 0;
netIn.tMax = 3e17;
2025-07-14 14:54:22 -04:00
netIn.dt0 = 1e-12;
return netIn;
}
void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) {
std::vector<fourdst::atomic::Species> logSpecies = {
fourdst::atomic::H_1,
fourdst::atomic::He_3,
fourdst::atomic::He_4,
fourdst::atomic::C_12,
fourdst::atomic::N_14,
fourdst::atomic::O_16,
fourdst::atomic::Ne_20,
fourdst::atomic::Mg_24
};
std::vector<double> initial;
std::vector<double> final;
std::vector<double> delta;
std::vector<double> fractional;
for (const auto& species : logSpecies) {
double initial_X = netIn.composition.getMassFraction(species);
double final_X = netOut.composition.getMassFraction(species);
double delta_X = final_X - initial_X;
double fractionalChange = (delta_X) / initial_X * 100.0;
initial.push_back(initial_X);
final.push_back(final_X);
delta.push_back(delta_X);
fractional.push_back(fractionalChange);
}
initial.push_back(0.0); // Placeholder for energy
final.push_back(netOut.energy);
delta.push_back(netOut.energy);
fractional.push_back(0.0); // Placeholder for energy
initial.push_back(0.0);
final.push_back(netOut.dEps_dT);
delta.push_back(netOut.dEps_dT);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.dEps_dRho);
delta.push_back(netOut.dEps_dRho);
fractional.push_back(0.0);
initial.push_back(netIn.composition.getMeanParticleMass());
final.push_back(netOut.composition.getMeanParticleMass());
delta.push_back(final.back() - initial.back());
fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0);
std::vector<std::string> rowLabels = [&]() -> std::vector<std::string> {
std::vector<std::string> labels;
for (const auto& species : logSpecies) {
labels.push_back(std::string(species.name()));
}
labels.push_back("ε");
labels.push_back("dε/dT");
labels.push_back("dε/dρ");
labels.push_back("<μ>");
return labels;
}();
gridfire::utils::Column<std::string> paramCol("Parameter", rowLabels);
gridfire::utils::Column<double> initialCol("Initial", initial);
gridfire::utils::Column<double> finalCol ("Final", final);
gridfire::utils::Column<double> deltaCol ("δ", delta);
gridfire::utils::Column<double> percentCol("% Change", fractional);
std::vector<std::unique_ptr<gridfire::utils::ColumnBase>> columns;
columns.push_back(std::make_unique<gridfire::utils::Column<std::string>>(paramCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(initialCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(finalCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(deltaCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(percentCol));
gridfire::utils::print_table("Simulation Results", columns);
}
void record_abundance_history_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
s_wrote_abundance_history = true;
const auto& engine = ctx.engine;
// std::unordered_map<std::string, std::pair<double, double>> abundances;
std::vector<double> Y;
for (const auto& species : engine.getNetworkSpecies()) {
const size_t sid = engine.getSpeciesIndex(species);
double y = N_VGetArrayPointer(ctx.state)[sid];
Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero
}
fourdst::composition::Composition comp(engine.getNetworkSpecies(), Y);
std::unordered_map<std::string, std::pair<double, double>> abundances;
for (const auto& sp : comp | std::views::keys) {
abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp)));
}
g_callbackHistory.emplace_back(ctx.t, abundances);
}
size_t g_iters = 0;
void record_contribution_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
s_wrote_reaction_history = true;
boost::json::object timestep;
boost::json::object reaction_contribution;
boost::json::object species_abundance;
std::set<fourdst::atomic::Species> activeSpecies(ctx.engine.getNetworkSpecies().begin(), ctx.engine.getNetworkSpecies().end());
for (const auto& [species, contributions] : ctx.reactionContributionMap) {
boost::json::object species_obj;
for (const auto& [reaction_id, contribution] : contributions) {
species_obj[reaction_id] = contribution;
}
reaction_contribution[std::string(species.name())] = species_obj;
double y;
if (activeSpecies.contains(species)) {
const size_t sid = ctx.engine.getSpeciesIndex(species);
y = N_VGetArrayPointer(ctx.state)[sid];
} else {
y = 0.0;
}
species_abundance[std::string(species.name())] = y;
}
timestep["t"] = ctx.t;
timestep["dt"] = ctx.dt;
timestep["reaction_contribution"] = reaction_contribution;
timestep["species_abundance"] = species_abundance;
g_reaction_contribution_history[std::to_string(g_iters)] = timestep;
g_iters++;
}
void save_callback_data(const std::string_view filename) {
std::set<std::string> unique_species;
for (const auto &abundances: g_callbackHistory | std::views::values) {
for (const auto &species_name: abundances | std::views::keys) {
unique_species.insert(species_name);
}
}
std::ofstream csvFile(filename.data(), std::ios::out);
csvFile << "t,";
size_t i = 0;
for (const auto& species_name : unique_species) {
csvFile << species_name;
if (i < unique_species.size() - 1) {
csvFile << ",";
}
i++;
}
csvFile << "\n";
for (const auto& [time, data] : g_callbackHistory) {
csvFile << time << ",";
size_t j = 0;
for (const auto& species_name : unique_species) {
if (!data.contains(species_name)) {
csvFile << "0.0";
} else {
csvFile << data.at(species_name).second;
}
if (j < unique_species.size() - 1) {
csvFile << ",";
}
++j;
}
csvFile << "\n";
}
csvFile.close();
}
void log_callback_data() {
if (s_wrote_abundance_history) {
std::cout << "Saving abundance history to abundance_history.csv" << std::endl;
save_callback_data("abundance_history.csv");
}
if (s_wrote_reaction_history) {
std::cout << "Saving reaction history to reaction_contribution_history.json" << std::endl;
std::ofstream jsonFile("reaction_contribution_history.json", std::ios::out);
jsonFile << boost::json::serialize(g_reaction_contribution_history);
jsonFile.close();
}
}
void quill_terminate_handler()
{
log_callback_data();
quill::Backend::stop();
if (g_previousHandler)
g_previousHandler();
else
std::abort();
}
void callback_main(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
record_abundance_history_callback(ctx);
record_contribution_callback(ctx);
}
int main() {
using namespace gridfire;
const NetIn netIn = init(1.5e7);
policy::MainSequencePolicy stellarPolicy(netIn.composition);
stellarPolicy.construct();
DynamicEngine& engine = stellarPolicy.construct();
solver::CVODESolverStrategy solver(engine);
solver.set_callback(solver::CVODESolverStrategy::TimestepCallback(callback_main));
const NetOut netOut = solver.evaluate(netIn);
log_results(netOut, netIn);
log_callback_data();
}